Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
MMWR Morb Mortal Wkly Rep ; 69(28): 918-922, 2020 Jul 17.
Article in English | MEDLINE | ID: covidwho-1389847

ABSTRACT

To limit introduction of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), the United States restricted travel from China on February 2, 2020, and from Europe on March 13. To determine whether local transmission of SARS-CoV-2 could be detected, the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) conducted deidentified sentinel surveillance at six NYC hospital emergency departments (EDs) during March 1-20. On March 8, while testing availability for SARS-CoV-2 was still limited, DOHMH announced sustained community transmission of SARS-CoV-2 (1). At this time, twenty-six NYC residents had confirmed COVID-19, and ED visits for influenza-like illness* increased, despite decreased influenza virus circulation.† The following week, on March 15, when only seven of the 56 (13%) patients with known exposure histories had exposure outside of NYC, the level of community SARS-CoV-2 transmission status was elevated from sustained community transmission to widespread community transmission (2). Through sentinel surveillance during March 1-20, DOHMH collected 544 specimens from patients with influenza-like symptoms (ILS)§ who had negative test results for influenza and, in some instances, other respiratory pathogens.¶ All 544 specimens were tested for SARS-CoV-2 at CDC; 36 (6.6%) tested positive. Using genetic sequencing, CDC determined that the sequences of most SARS-CoV-2-positive specimens resembled those circulating in Europe, suggesting probable introductions of SARS-CoV-2 from Europe, from other U.S. locations, and local introductions from within New York. These findings demonstrate that partnering with health care facilities and developing the systems needed for rapid implementation of sentinel surveillance, coupled with capacity for genetic sequencing before an outbreak, can help inform timely containment and mitigation strategies.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Community-Acquired Infections/diagnosis , Community-Acquired Infections/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Sentinel Surveillance , Adolescent , Adult , Aged , COVID-19 , Child , Child, Preschool , Community-Acquired Infections/epidemiology , Coronavirus Infections/epidemiology , Emergency Service, Hospital , Female , Humans , Infant , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Sequence Analysis , Travel-Related Illness , Young Adult
3.
Cancer Cell ; 38(5): 661-671.e2, 2020 11 09.
Article in English | MEDLINE | ID: covidwho-758645

ABSTRACT

Patients with cancer may be at increased risk of severe coronavirus disease 2019 (COVID-19), but the role of viral load on this risk is unknown. We measured SARS-CoV-2 viral load using cycle threshold (CT) values from reverse-transcription polymerase chain reaction assays applied to nasopharyngeal swab specimens in 100 patients with cancer and 2,914 without cancer who were admitted to three New York City hospitals. Overall, the in-hospital mortality rate was 38.8% among patients with a high viral load, 24.1% among patients with a medium viral load, and 15.3% among patients with a low viral load (p < 0.001). Similar findings were observed in patients with cancer (high, 45.2% mortality; medium, 28.0%; low, 12.1%; p = 0.008). Patients with hematologic malignancies had higher median viral loads (CT = 25.0) than patients without cancer (CT = 29.2; p = 0.0039). SARS-CoV-2 viral load results may offer vital prognostic information for patients with and without cancer who are hospitalized with COVID-19.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Hospitalization/statistics & numerical data , Neoplasms/mortality , Pneumonia, Viral/complications , Viral Load , Aged , Aged, 80 and over , COVID-19 , Case-Control Studies , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/virology , New York/epidemiology , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Prognosis , Retrospective Studies , SARS-CoV-2 , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL